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Abstract. We consider the classical problem of linearizing a vector fi€ldiround a fixed
point. We adopt a non-perturbative point of view, based on the symmetry properties of linear
vector fields.

1. Introduction and statement of the problem

The problem of linearizing a nonlinear vector field in the neighbourhood of a fixed point
by means of’*> transformations is a classical one, its perturbative treatment going back to
Poincaé [1-4] in the general case and to Birkhoff for Hamiltonian systems [5, 6]; here we
want to consider it from a non-perturbative point of view; moreover, we will not deal with
general normal form transformations [1-6], but only consider linearizable systems.

Indeed, although it turns out that the Poiree@rocedure for linearizing, a linearizable
system is also successful in reducing a generic (nonlinearizable) system to its normal form,
so that the problem of formal reduction to normal form is not more difficult in the general
case than in the linearizable one, it is natural to expect that if we proceed non-perturbatively,
the linearizable case will be much easier to treat. The considerations we will use in the
following are specific to the linearizable case, and can not be extended to the general one.

Let us consider dinear dynamical system iR" for which the origin is a fixed point,

X' = A x (6N
(wherei,j = 1,...,n and A is an x n real matrix), and consider now an invertible
(nonlinear) diffeomorphistwhich identifies a change of coordinates

X =@y @

we will also denote by’ = Wi(x) the inverse change of coordinates. Let us denoteé by
the Jacobian of this change of coordinates, and his inverse,

: ad"  9x! ; ayt 9wl C :
P LA S A 3)
T axi o ayd T 9x/ OxJ J
In the new coordinates (1) is written as
V=) 4)

§ E-mail address: G.Gaeta@Ilboro.ac.uk
|| It will be clear from the following discussion that we could as well consider a domaincontaining the
origin—in R" rather than the whol®"; similarly we could as well consideb invertible only locally.
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where thef are nownonlinear functions given explicitly by
1) =THmA @/ (y). (5)

Suppose now that we have to study (4), witlgiven explicitly, so that we do not know
aboutA and ®. How can we find out that (4) corresponds actually to linear dynamics ‘in
the wrong coordinates’?

The purpose of the present note is indeed to answer this question; it will turn out that
in the process of answering this we also answer the question of how to concretely linearize
the system, i.e. to determine the linearizing change of coordiriates

2. Symmetry approach

Clearly, a possible approach would consist in using the theory of (Pé+bBatac)normal

forms, this would amount to a perturbative construction, order by order, of the inverse
change of coordinates, thus mapping (4) back into (1). This approach is completely
algorithmic and constructive, and moreover it is quite general, in that it works both for
linearizable and nonlinearizable systems. However, in the linearizable case this approach
has also several drawbacks, essentially amounting to its perturbative character:

(a) if A presents resonances, one would expect nonlinear resonant terms [1-4] to be
present, so that one would realize the inherent linearity of the system only after checking a
series (usually infinite) of ‘miraculous’ cancellations occurring in the normalized expansion;

(b) if @ is not analytic—even iiC>®—we can not hope to linearize the system by the
Poincaé procedure, which is inherently perturbative and polynomial (one could consider
Ecalle’s resurgent functions theory [7, 8], but again this means introducing very complicated
tools for a simple problem);

(c) in any case, the procedure requires extensive computations, checks of the
convergence of perturbative expansions, and so on; moreover, we should go to infinite
order in perturbation theory to obtain exact linearization. Even in the most favourable case,
in which one is sure priori of the linearizability of the problem and of the convergence
of the linearizing transformation (e.g. thanks to Siegel’'s theorem [2,6] or to symmetry
properties [9-14]), to compute the explicit linearizing change of coordinates one still has
to go at infinite order in perturbation. In one word, it requires a huge amount of work to
recognize the simple system (1).

Thus, we will look for a different, non-perturbative, approach for this problem. The
natural idea would be to look for properties of the dynamical system, or equivalently of the
vector field

X= il o i Q)
T gxi T y ayi
which are invariant under changes of coordinates—i.e. they have a tensorial character—and
which recognize the linear nature of the system. From this point of view, it is quite natural
to look at thesymmetries of (1): indeed, if a vector field commutes withX, the relation
[X, S] = 0 will hold independently of any system of coordinates (here and in the following
[.,.] is the usual commutator of vector fields).

Symmetries which are related to the linear nature of (1) are those generated by powers

of A, i.e. by vector fields of the form (in the coordinates)

9
oy )

1 The symmetry approach to differential equations—both ODEs and PDEs—pioneered by Lie, has received
recently diffused attention and is dealt with, and applied, in several books and many papers, see e.g. [15-21].

Xk = [Ak]ijxj
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for k a non-negative integer. Clearly, as it follows froal'[ A™] = 0, these form an abelian
algebra (generically of dimensior). Notice that fork = 0 (i.e. for A° = I) we have the
generator of scalingsYo = x'9/dx’, which will be a symmetry for any linear system.

In the y coordinates, theX, take the form

. ) d
X =T[4, " 0) gy @)

These satisfy therefore, in particular,
Xiy1 = TATHX,. (8"

Thus, even if we analyse the symmetry algebra of (4) and we detect in it an abelian
algebra, it can be difficult to realize the vector fields in it are of this form, although of
course the relatiori8”) is easier to recognize than the fori®).

The situation is slightly better if we considéiy alone: indeed, in this case we have to
look for symmetries of the simpler form

. )
Xo=T" (' (y) 5y 9)

with T" given by (3). Thus, a possible approach would consist of looking for solutions to
the determining equation for symmetries of dynamical systems

e+ (fVIg—(p-V)f=0 (10)
in the formg(y, 1) = (D®~1)®. Recalling thatD® ! = —d~1(DP)d 1, this also reads
p(y.1) = —d1(DP). . A

Notice that the fact that'(d/dx") is a symmetry, without further assumptions on the

X (e.g. analyticity), only ensures that in thecoordinates we hav& = f(x)d, with f
homogeneous of order one; on the other hand, as we deal with non-sinfuéard ©
invertible, we are guaranteed that in this settjfigs indeed linear. We have therefore:

Lemma 1. If the equation (4) admits a symmetgj(y)d/dy’ andg can be written in the
form [D®~1(y)]’;®/(y), then by the change of coordinates= ®~*(x), (4) is reduced to

a systemi = f(x) with f linear.

We stress that lemma 1 doset require the determination of the full symmetry of (4),
i.e. the most general solution to (10), but only a special solution with an appropriate form.
Indeed, getting the full solution to (10) requires one to find the most general solution to the
associated homogeneous PDE, namely to solve (4).
Another possibility stems from the obvious observation that (1) admits a linear
superposition principlte this means, in particular, that
;o0
Xe =815
generates a symmetry of (1), provideédobeys (1) itself, i.e. provided(r) = A"jg/'(t).
Indeed, one can easily check that this is the case by using equation (10)icdbedinates,
which in this case reduces fo= At.
In the y coordinates we have

. . 0
Xe =T, (& (1)

oyt
and therefore we have:

t We recall that ifp satisfies (10), theX, = ¢’ (y, 1)(3/3y’) is a symmetry ofX [15-21].
i The idea of using this fact to characterize the linearizability of a nonlinear PDE belongs to Kumei and Bluman
[16, 22-24]; here we are actually specializing their theory to the case of first order ODEs.

(11)

(12)
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Lemma 2. If the equation (4) admits a symmetgy(y)d/dy’ for ¢ of the formM;' (NEI (1)
with & an arbitrary solution of the linear equatién= A¢, then by the change of coordinates
y = & 1(x), with M = D®1, (4) is reduced to the linear systein= Ax.

Here again, we stress that it is not required to know the most general solution of (10).

3. Intrinsic approach

It is possible to look for the linearization of a dynamical system in a slightly more general
setting, making contact with the general theory of Nijenhuis operators [25-29].

We define aseparating sebf functions to be a finite collectionfy, f>, ..., f, such that
fa(x) = fo(y) foranya =1, ..., p impliesx = y; this means that we must haye> n.

Definition. A separating set of functions is said to béirearizing setfor X if it happens
that

foa = Aahfb- (13)
(Here, Ly is the Lie derivative along(.)
Then, any vector field admitting a linearizing sef is f-related to a linear system
on R”, with a mapf : R" — R? which is just given by
fix— (a0, ..., fr(x). (14)
If we denote byz, the coordinates irkR?, the image ofR" under f will be given by
za = f.(x). S0, in thez coordinates our vector field is f-related to
0
Y::Afaah. (15)
When p = n, we get a linearization of our system in the usual sen3éerefore, given a
vector fieldX we can look for a linearizing set fax in the specific case = n.
We consider now a vector field, and denote by the semiflow undef,

d
FrdE Niso=Z») (16)

we will also denote byB;s(yo) the ball of radius centred iny.

Definition. The vector fieldZ is dilation-type if: (i) there exists a uniqug such that
Z(yo) = 0; (i) there existn functionally independent real functions : M — R which are
solutions of

Z(h) = h. (17)

Notice that thei;s provide a linearizing set faZ, with matrix A> = §¢. We say then
that theh; are adiagonalizingset of functions forZ.

Notice also that it would be natural to require that for a dilation field therg is 0
such that

Nim £@5y) = yo vy € Bs(yo) (18)
however, this is automatically satisfied when a linearizing set exists.

1 The introduction of linearizing sets in the general case allows one to deal with more general situations [28, 29];
e.g. if we have a linear flow irR"” but we consider it on a nonlinear embedded submanifdldthe simplest

case being that oM = §"~1 — R"), the flow onM cannot be globally linearized in the usual sense, but it is
recognized as a linear flow by means of this approach.
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Lemma 3. If Z is a dilation-type vector field, withh, ..., h,} a diagonalizing set of
functions forZ, then anyf solution of Z(f) = f can be uniquely written as

FO)Y =) chi(y). (19)
i=1

Indeed, since thé;s are functionally independent (which is a condition stronger than
the separating condition) we have for any functipn

df =g’ dn; g eF. (20)
By requiring f to be a solution to (17) we get
f=df(2)=g'dhi(Z) = g'h; = Lz f (21)

and thereforgL,g")h; = 0 impliesL,g' = 0, as thek; are functionally independent. Due
to the regularity requirement on tié in the neighbourhood of,, we haveg’ € R. Thus,
we conclude that any solution t8(f) = f can be written in the form (19), with the
real constants; the lemma is proved.

Clearly, if Z is just Xo, thenyy, = ®(0) and theh; are nothing else than the as
functions of they, i.e. h; = ®(y).

Using lemma 3, we have immediately:

Lemma 4. Let Z be a dilation-type vector field, witki,, ..., h,} a diagonalizing set of
functions forZ. If [ X, Z] = O, then{hy, ..., h,} is a linearizing set fotX.

Indeed, if [X, Z] = 0, we have
Lxh; = Lx(Lzh;) = LzLxh; (22)
which also means
Lyxh; = A’ h; (23)
because of the properties of solutions to (17) and of lemma 3. Ag;thdefine a change

of coordinatest’ = h;(y), the linearized vector field will be

Y = Ai'/hj 9 .
ah;
We finally notice that generically (i.e. under suitable non-degeneracy conditions, satisfied
by generic vector fields) ifi; is a solution toL;h = h, we may get new functionally
independent solutions by applying repeateflly to #;1. This simple fact can be of help in
constructing the diagonalizing set far.

(24)

4. Symmetry and recursion operators

In this section, we would like to point out how the approach defined in the previous section
is related to recursion operators and the Lax formalism for integrable systems. Notice,
indeed, that a system which is linearizable by a change of coordinate (C-linearizable in the
Calogero terminology) is by this definition also integrable.

When X is a linear vector field,

. .0
X=A" x/ —
J ox'

(25)
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we can associate to the matrxa (1, 1) tensor field

R=Ty=A' [dx"@a}. (26)
ax/

This tensor satisfies automatically the two equations

Lx(R)=0 27)
Ng=0 (28)

where Ly is the Lie derivative along(, and Ny is the Nijenhuis tensor [25-29] associated
with R, i.e.

Ng[X,Y] =[RX, RY]+ R?[X,Y] — R[[RX, Y] +[X, RY]]. (29)
By applying R to X we get the vector fieldX; = (R)*X, which have the property that
[Xi, Xu] =0 (30)

i.e. we can generate pairwise commuting symmetries.

Thus for a givenX, the existence of &1, 1) tensor fieldR such that (27) and (28) are
satisfied is a necessary condition f6rto be linearizable.

It would be possible [28, 29] to look for a separating set of functions by searching for
invariant subspaces of exact 1-forms under the endomorphism associdteahtd-forms,
ie.

R(df.) = B, df; (31)
with B a real matrix. Clearly, for the powers & we have
(R)*(df.) = (BY), dfp (32)

where B¥ is the kth power of the matrixB. Notice also that generalized eigenspaces of
are invariant subspaces far.

It should be stressed, finally, that thitshas all the properties ofr@cursion operator(in
the sense encountered in the theory of integrable systems [15, 28]) for our finite-dimensional
evolution equation; thus, it permits one to also obtain a Lax representation, as discussed,
for example, in [28].

Rather than discussing this point here, we refer to [28, 29] for a general discussion, and
more specifically to [28—35] for the geometry of Lax systems, to [25—-29] for the geometry of
Nijenhuis operators, to [25-29, 36—39] for how the Nijenhuis tensor describes the geometry
of the tangent bundle; and to [36—40] for the geometry of the Nijenhuis tensor in relation
with a distinguished vector field on M describing dynamical evolution. Finally, for the
Hamiltonian setting (shortly discussed in the appendix), see [31-35, 41, 42].

5. Examples: linearizable vector fields

We will now consider some examples of applications of our results. We will for each
example consider, in order, the application of the methods based on lemma 1, lemma 2 and
on lemma 4.

In the following we write all indices as lower ones, to avoid any confusion between
indices and exponents.
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Example 1.As a first although trivial test, we consider the case- 1. Now we have for
(1) x = ax, and

o
=a—. 33
f=ag (33)
Looking first forg = ¢(y) as solution to (10), we get

“ =L (34)

@ f

and in this case we actually have

cD/ q)//
- _ = 35
sN=g % (35)

so that indeed

() =cP)/P'(y) =Cf(y). (36)

Thus, applying lemma 1 is just equivalent to determining directly if, giy&n), there
exists ad such that (33) is verified; obviously this just yields

y
Q(y) = exp[ la/f ()] dy}- (37)
Yo
To make a concrete example, in this way we immediately get that
_ 1+
V=173, (38)
is transformed intor = ax with
x=d(y) =y+y> (39)
Let us now look for
=9y, 1) =a(E®) (40)
so that (10) now reads
aé"‘fgay:o‘gfy (41)
which for « yields
do f, & 1:|
— == =2 |dy. 42
o [ FoErl” 42

If £ = k&, we get
do

K\ &, o,
[o-)% %]
o a) ® [
and choosingt = a we get
€2
= - 44
“= o (44)
For a concrete example, one could use this approach to obtaihich, for f as in
(38), yields the same as in (39).
In the approach based on lemma 3 (and with the notation of sectigf i8)just given
by Z = g(y)d/dy, see equation (34). With this, (18) just yielggy) = ¢®(y), which
corresponds to lemma 3.
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Example 2. We consider now a two-dimensional systera= f(y), with only one nonlinear
term:
J1=y1—€y2— 5
y2 = y2.
Let us first try to apply lemma 1. From (10), we obtain that the vector figJddentified
by

(45)

Q1=y1— 5 P2 =y2 (46)
is a symmetry of our system, this is of the fogn=TI';; ®; with
_ (it _ (1 2»
o= (PHE) oo(2 2 @
which indeed satisfiesIT!];; = d®,/dy;; correspondingly we get the linearizing
transformationd—* as
y1=2x1— x5 Y2 = x2 (48)
and in this coordinate we get, as expected,
ad
Xo = Xi—. (49)
E)xi

Let us now come to the procedure based on lemma 2, i.e. let us logkifothe form
e(y,t) =T ()& (¢). The equations (10) are ngwassuming that; = A;;j&; for someA
and eliminating the common facté,

s aal‘,k _ ofi
yi 0y

With the explicit expression off, and thereforedf/dy, given above, we have that
indeed forl" as in (47) above and

1 —e
A:(O 1) (51)

the equation is satisfied. This leads to the same linearizing transformation (48) as above,
and the linear equation is indeed just Ax.
Let us now consider, for the same problem, the approach of section 3; we take

0

ij — F,‘j Ajk- (50)

0
Z=(1—y)— +yr— 52
=Yyt (52)
and the diagonalizing,s are given by
hyi=y1+y5 hz = y2. (53)

One can check that in this case, solving (18)—e.g. by the method of characteristics—
yields
F () = c1h1(y) + c2ha(y) (54)
with arbitrary constants;, c,; and moreover that
X (h1) = h1 — €hy
X(h2) = hz

so thatx; = h;(y) takes the system into the formh = Ax with the sameA as in
X (h;) = A;jh;.

(55)

1 Notice thatA andI" should be seen as the unknowns of the problem.
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Example 3.We will consider again a system iR?, given now by

_ 2(y1+ y2 + €M)
f_((YZ_)’l)(l—i‘ze“)-i-eyl—282“)' (56)

If we look for solutions of (10) in the fornp = ¢(y), we are confronted with a system
of two PDEs, i.e.

0 ! ) d )
20y1 + y2 + €] a—(ypl 2= yD(A+26€) + e — 26 8%1 = 21+ €")g1 + 20
1 2
0 ! ! 0
2y +y2+ €117 4 [0 — y)(L+26%) + et — 28] ¥ 7
dy1 dy2

= —[(1+€Y) +2(y1+ y2) € + 401 + (1 — 2€%)p2.

It is quite clear that this is not an easy equation to solve; however, one can check that

_ y1
“"(yﬁ(l—yl)em) (58)

provides a special solution to (57). This is indeed of the form (9), as required to apply
lemma 1, with

yit+y2+e*
® = < MR > (59)
1 -1 ap L
I= (—eﬂ 1+e"1> - |:8y:| ' (60)

In order to apply lemma 2 we would instead look for solutions to (10) in the form
¢ = T'i;;(»& (). The equations satisfied by thg; are now even more complicated, but
we can take advantage of the freedom given byAhdndeed, tha™ given above is also a
solution to the set of equations one obtains in this way, provided one chooses

A= (_i g) . (61)

Indeed, by (59) we have that, with the inverse change of coordinates

y1=X1 X(zx ) (62)

y2 =Xz — €%

we reducey = f(y), with f given by (56), tax = Ax with A given by (61).
If we apply the approach of section 3, based on the existence of a dilation-typé& field

commuting withX, the Z is given byZ = ¢;9/0y; with ¢ as in (58); theh; are thed;

given in (59), and equation (18) givesas in (54); again, it is easily verified that

X (hi) = A;jh; (63)
with A given explicitly by (61).

6. Examples: nonlinearizable vector fields

We will now give examples in which our results are used to show that a given vector field
(dynamical system) canot be linearized; we consider systemsRA for simplicity.
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Example 4. We give first an example of a system which is not linearizable because it does
not admit enough symmetries. We consid®rwith coordinatesx, y) and the vector field

I =p(x%+y?) (xay—ya>. (64)

If this vector field is linearizable, it has to admit at least two symmetries.

We notice thatXo = xd, — yd, andA = xd, + yd, are a basis for the module of vector
fields which have the origin as a fixed point. Therefore our symmetries should have the
form Y = aXo+ bA, with a, b € F(R?) smooth functions

We then look fora, b such that ¥, I'] = 0; we have to require that (withx the Lie
derivative alongX)

[aXo+bA, pXo] = (bLap — ¢Lx,a)Xo — ¢(Lx,b)A = 0. (65)
Therefore—for the vanishing of the term alomg—we needLx,b = 0, which implies
b=b(x%+y?).

For the other term, i.e. fromL,¢p = ¢Lx,a, we integrate both sides along a circle
centred at the origin:

/ (bLrg)d = ¢ / (Ly,a) do (66)
st st

whereg has been taken out of the integral because it depends only?on y?), i.e. is a
constant ons'. By using this same argument we arrive at

21 (bLag) = ¢(a(27) — a(0)) (67)

if the functiona is regular,a(2r) = a(0) and we gethL ¢ = 0. Thus, either = 0
or Laoe = 0 (or both). Now,A does not have any smooth constant of motion, and thus
LA = 0 implies thaty is a constant, or otherwise it has to be= 0.

It follows from this thatL, ¢ # 0 requiresb = 0, i.e. there is only one family of
symmetries (depending on a constant) for our system, which therefore cannot be linearized.

Example 5. We will now consider examples in which we have the required number of
symmetries, but none of them is a dilation-type vector field.
Let us writer? = x2 + y2, and consider the (Van der Pol-like) system

¥ =—0?=Dx+(r? -2y
y=—0?=2x—(? =Dy

we denote the corresponding vector fieldXas
When we look for symmetries, i.e. for vector fields

Y = f(x,y)d +g(x, y)dy (69)

such that K, Y] = 0, it turns out that the only solutions are of the form (with ¢, real
constants)

(68)

Y]_ = 61X Yz = Cz(xay - yax). (70)

It is clear thatY; is not a dilation-type vector field (it is just a homogeneous rotation),
andY; is just proportional taX (which is, by the way, not dilation-type as well). Thus, we
can conclude—using any of the proposed approaches—=thatnot linearizable.

Indeed, as for the first proposdl, does not admit symmetries depending on an arbitrary
solution of a linear equation; for the second one, it does not admit a dilation-type symmetry.

1 We recall that symmetries of a vector field with isolated fixed points should have the same points as fixed points.
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Example 6. We consider now the following generalization (againRR) of the situation
encountered in example 5:

x=oa(r)x — Br)y
y=B@)x +a(r)y

(where botha () and 8(r) are not identically zero) so that we deal with the vector field

(71)

X = (a(r)x = B(r)y)ox + (B(r)x + a(r)y)dy (72)
or, as it is convenient to use polar coordinate®),
X =a(r)d, + B(r)dy. (73)
We write in full generality
Y = f(r,0)9, + g(r,0)dy (74)
and now the conditionX, Y] = O gives two PDEs, i.e.
of of .
oe(r)g + ﬂ(r)@ =f-ar) (75)
g g _ .
a(r)a + ﬁ(r)@ =f-Bg). (76)

These can be solved using the method of characteristics; for the first one we get
dr do ds

= - (77)
a(r) By fa'(r)
equating the first and the third term we get
f@r,0) =§0)a(r) (78)
and by using the other term—or going back to (75)—wegé&t) =0, i.e.
f(r,0) = cra(r). (79)
Let us look at (76); this yields
dr _ do _ dg (80)
a(r)  pr) caalr)p'(r)
equating, here again, the first and the third term we get
g(r,0) = c1B(r) +£(0) (81)
and again, from the other term or going back to (76) wegjét) = 0, i.e.
g(r,0) = c1B(r) + ca. (82)
Thus, we have only two symmetries,
Y]_ = C]_X (83)
Y2 = 6289 (84)

and we are in the same situation as in example 5, and we can derive the same conclusions,
i.e. thatX is not linearizable. Clearly, the present discussion does not apply if the condition
a(r) # 0= B/(r) is not satisfied.
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Appendix. Linearization of Hamiltonian systems

In this appendix, we shortly consider the case of a Hamiltonian system, and how the
discussion given in the present paper applies to it.

We recall that a dynamical systekhis a Hamiltonian on a symplectic manifold, w),
wherew is a symplectic structure (i.e. a closed non-degenerate two-form) if

ixo = —dH (85)

with H the Hamiltonian function.

It would be natural enough to ask what can be said ahoahd H if we linearize X;;
as a matter of fact, the possibility that admits alternative Hamiltonian descriptions [43]
suggests that not much can be said, in the end, about them.

We recall thatX admits alternative Hamiltonian descriptions if there exists symplectic
structuresw, and Hamiltonian functiong?,—where a belongs to some index set—such
that

ixw, = —dH,. (86)

To investigate our question, let us start with a coordinate sy$tewhich linearizesx,
ie.

S0
X=(A" &) —. 87
(A8 55 (87)
In this the equations of motion are
. OH .
i i T Al sk
E=uw 557 = Al (88)
where we have writtew as
w = wjj dg’ A dg/ a)"ja)jk =4, (89)
We notice that fols =0 (i.e.£* =0fork =1, ..., 2n) we have
. dH(0)
LJ —
" (0) o8l 0 (90)
with %/ (0) invertible.
If we differentiate (88) and evaluate it at the origin, we get
: . 92H(0)
1 — L]
Ay =w (0)78@851(. (91)
Thus,® and H, given by
, - - 0%H(O
@ = wj d&7 A dg” H=¢/¢" © (92)
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provide a Hamiltonian description for the dynamics.

As a byproduct of this discussion, we get that any decompositiohiofo an invertible
skew-symmetric matrix times a symmetric matrix provides an alternative Hamiltonian
description ofX. If we write

A=wyt- Ho (93)
by using any invertible matri¥’ which commutes withA we get
A= [T 0y (TH ] - (T HoT] (94)

thus, if T is not a canonical transformation fag, by this procedure we obtain alternative
Hamiltonian descriptions.

It is not difficult to show that odd powers af are matrices associated with Hamiltonian
(with respect towg) vector fields, while even powers are generators of symmetried for
which are not canonical; therefore a linear Hamiltonian vector field always admits alternative
Hamiltonian descriptions [44].

By using odd powers ofi, for a generic matrixd which describes a linear Hamiltonian
vector field, we get a maximal set of pairwise commuting quadratic first integrals; i.e. any
linear Hamiltonian system (even if it is not generic) is always completely integrable in the
Liouville sense [44].

We would like to summarize our discussion of the Hamiltonian case as follows.
A linearizable Hamiltonian system does always admit (many) alternative Hamiltonian
descriptions; out of a given Hamiltonian description for a given linearizable dynamical
system described by a vector field we can always find one with a quadratic Hamiltonian
(in a coordinate system in which the vector fieXdis linear); a linearizable Hamiltonian
system is always integrable in the Liouville sense. As for the linearization process, we
should first linearize the dynamical vector field and only afterwards take care of its
Hamiltonian description.

Finally, for what concerns the recursion operator, we mention that in this case we get
a factorizable one [45,46], by using, to raise the indices ofv,, with the additional
requirement that the Poisson bracket

(&, N0y = 0l + o) (95)
satisfies the Jacobi identity.
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