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Abstract. We consider the classical problem of linearizing a vector fieldX around a fixed
point. We adopt a non-perturbative point of view, based on the symmetry properties of linear
vector fields.

1. Introduction and statement of the problem

The problem of linearizing a nonlinear vector field in the neighbourhood of a fixed point
by means ofC∞ transformations is a classical one, its perturbative treatment going back to
Poincaŕe [1–4] in the general case and to Birkhoff for Hamiltonian systems [5, 6]; here we
want to consider it from a non-perturbative point of view; moreover, we will not deal with
general normal form transformations [1–6], but only consider linearizable systems.

Indeed, although it turns out that the Poincaré procedure for linearizing, a linearizable
system is also successful in reducing a generic (nonlinearizable) system to its normal form,
so that the problem of formal reduction to normal form is not more difficult in the general
case than in the linearizable one, it is natural to expect that if we proceed non-perturbatively,
the linearizable case will be much easier to treat. The considerations we will use in the
following are specific to the linearizable case, and can not be extended to the general one.

Let us consider alinear dynamical system inRn for which the origin is a fixed point,

ẋi = Ai
jx

j (1)

(where i, j = 1, . . . , n and A is a n × n real matrix), and consider now an invertible
(nonlinear) diffeomorphism‖ which identifies a change of coordinates

xi = 8i(y) (2)

we will also denote byyi = 9i(x) the inverse change of coordinates. Let us denote by3

the Jacobian of this change of coordinates, and by0 its inverse,

3i
j = ∂8i

∂xj
≡ ∂xi

∂yj
0i

j = ∂yi

∂xj
≡ ∂9i

∂xj
3i

j0
j

k = δi
k. (3)

In the new coordinates (1) is written as

ẏi = f i(y) (4)

§ E-mail address: G.Gaeta@lboro.ac.uk
‖ It will be clear from the following discussion that we could as well consider a domainD—containing the
origin—in Rn rather than the wholeRn; similarly we could as well consider8 invertible only locally.
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5036 G Gaeta and G Marmo

where thef are nownonlinear functions given explicitly by

f i(y) = 0i
k(y)Ak

j8
j (y). (5)

Suppose now that we have to study (4), withf given explicitly, so that we do not know
aboutA and8. How can we find out that (4) corresponds actually to linear dynamics ‘in
the wrong coordinates’?

The purpose of the present note is indeed to answer this question; it will turn out that
in the process of answering this we also answer the question of how to concretely linearize
the system, i.e. to determine the linearizing change of coordinates8.

2. Symmetry approach

Clearly, a possible approach would consist in using the theory of (Poincaré–Dulac)normal
forms; this would amount to a perturbative construction, order by order, of the inverse
change of coordinates, thus mapping (4) back into (1). This approach is completely
algorithmic and constructive, and moreover it is quite general, in that it works both for
linearizable and nonlinearizable systems. However, in the linearizable case this approach
has also several drawbacks, essentially amounting to its perturbative character:

(a) if A presents resonances, one would expect nonlinear resonant terms [1–4] to be
present, so that one would realize the inherent linearity of the system only after checking a
series (usually infinite) of ‘miraculous’ cancellations occurring in the normalized expansion;

(b) if 8 is not analytic—even ifC∞—we can not hope to linearize the system by the
Poincaŕe procedure, which is inherently perturbative and polynomial (one could consider
Ecalle’s resurgent functions theory [7, 8], but again this means introducing very complicated
tools for a simple problem);

(c) in any case, the procedure requires extensive computations, checks of the
convergence of perturbative expansions, and so on; moreover, we should go to infinite
order in perturbation theory to obtain exact linearization. Even in the most favourable case,
in which one is surea priori of the linearizability of the problem and of the convergence
of the linearizing transformation (e.g. thanks to Siegel’s theorem [2, 6] or to symmetry
properties [9–14]), to compute the explicit linearizing change of coordinates one still has
to go at infinite order in perturbation. In one word, it requires a huge amount of work to
recognize the simple system (1).

Thus, we will look for a different, non-perturbative, approach for this problem. The
natural idea would be to look for properties of the dynamical system, or equivalently of the
vector field

X = Ai
jx

j ∂

∂xi
= f i(y)

∂

∂yi
(6)

which are invariant under changes of coordinates—i.e. they have a tensorial character—and
which recognize the linear nature of the system. From this point of view, it is quite natural
to look at thesymmetries† of (1): indeed, if a vector fieldS commutes withX, the relation
[X, S] = 0 will hold independently of any system of coordinates (here and in the following
[. , .] is the usual commutator of vector fields).

Symmetries which are related to the linear nature of (1) are those generated by powers
of A, i.e. by vector fields of the form (in thex coordinates)

Xk = [Ak]i j x
j ∂

∂xi
(7)

† The symmetry approach to differential equations—both ODEs and PDEs—pioneered by Lie, has received
recently diffused attention and is dealt with, and applied, in several books and many papers, see e.g. [15–21].
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for k a non-negative integer. Clearly, as it follows from [An, Am] = 0, these form an abelian
algebra (generically of dimensionn). Notice that fork = 0 (i.e. for A0 = I ) we have the
generator of scalings,X0 = xi∂/∂xi , which will be a symmetry for any linear system.

In the y coordinates, theXk take the form

Xk = 0i
j (y)[Ak]jm8m(y)

∂

∂yi
. (8′)

These satisfy therefore, in particular,

Xk+1 = (0A0−1)Xk. (8′′)

Thus, even if we analyse the symmetry algebra of (4) and we detect in it an abelian
algebra, it can be difficult to realize the vector fields in it are of this form, although of
course the relation(8′′) is easier to recognize than the form(8′).

The situation is slightly better if we considerX0 alone: indeed, in this case we have to
look for symmetries of the simpler form

X0 = 0i
j (y)8j (y)

∂

∂yi
(9)

with 0 given by (3). Thus, a possible approach would consist of looking for solutions to
the determining equation for symmetries of dynamical systems†

ϕt + (f · ∇)ϕ − (ϕ · ∇)f = 0 (10)

in the formϕ(y, t) = (D8−1)8. Recalling thatD8−1 = −8−1(D8)8−1, this also reads
ϕ(y, t) = −8−1(D8).

Notice that the fact thatxi(∂/∂xi) is a symmetry, without further assumptions on the
X (e.g. analyticity), only ensures that in thex coordinates we haveX = f̃ (x)∂x with f̃

homogeneous of order one; on the other hand, as we deal with non-singularf , and 8

invertible, we are guaranteed that in this settingf̃ is indeed linear. We have therefore:

Lemma 1. If the equation (4) admits a symmetryϕi(y)∂/∂yi andϕ can be written in the
form [D8−1(y)]i j8

j (y), then by the change of coordinatesy = 8−1(x), (4) is reduced to

a systemẋ = f̃ (x) with f̃ linear.

We stress that lemma 1 doesnot require the determination of the full symmetry of (4),
i.e. the most general solution to (10), but only a special solution with an appropriate form.
Indeed, getting the full solution to (10) requires one to find the most general solution to the
associated homogeneous PDE, namely to solve (4).

Another possibility stems from the obvious observation that (1) admits a linear
superposition principle‡; this means, in particular, that

Xξ = ξ i(t)
∂

∂xi
(11)

generates a symmetry of (1), providedξ obeys (1) itself, i.e. provideḋξ i(t) = Ai
j ξ

j (t).
Indeed, one can easily check that this is the case by using equation (10) in thex coordinates,
which in this case reduces tȯξ = Aξ .

In the y coordinates we have

Xξ = 0i
j (y)ξ j (t)

∂

∂yi
(12)

and therefore we have:

† We recall that ifϕ satisfies (10), thenXϕ = ϕi(y, t)(∂/∂yi) is a symmetry ofX [15–21].
‡ The idea of using this fact to characterize the linearizability of a nonlinear PDE belongs to Kumei and Bluman
[16, 22–24]; here we are actually specializing their theory to the case of first order ODEs.
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Lemma 2. If the equation (4) admits a symmetryϕi(y)∂/∂yi for ϕ of the formMi
j (y)ξ j (t)

with ξ an arbitrary solution of the linear equationξ̇ = Aξ , then by the change of coordinates
y = 8−1(x), with M = D8−1, (4) is reduced to the linear systeṁx = Ax.

Here again, we stress that it is not required to know the most general solution of (10).

3. Intrinsic approach

It is possible to look for the linearization of a dynamical system in a slightly more general
setting, making contact with the general theory of Nijenhuis operators [25–29].

We define aseparating setof functions to be a finite collectionf1, f2, . . . , fp such that
fa(x) = fa(y) for any a = 1, . . . , p implies x = y; this means that we must havep > n.

Definition. A separating set of functions is said to be alinearizing setfor X if it happens
that

LXfa = A b
a fb. (13)

(Here,LX is the Lie derivative alongX.)

Then, any vector fieldX admitting a linearizing setf is f -related to a linear system
on Rp, with a mapf : Rn → Rp which is just given by

f : x → (f1(x), . . . , fp(x)). (14)

If we denote byza the coordinates inRp, the image ofRn underf will be given by
za = fa(x). So, in thez coordinates our vector fieldX is f -related to

Y = A b
a zb

∂

∂za

. (15)

Whenp = n, we get a linearization of our system in the usual sense†. Therefore, given a
vector fieldX we can look for a linearizing set forX in the specific casep = n.

We consider now a vector fieldZ, and denote byζ the semiflow underZ,

d

dt
ζ(t; y)

∣∣
t=0 = Z(y) (16)

we will also denote byBδ(y0) the ball of radiusδ centred iny0.

Definition. The vector fieldZ is dilation-type if: (i) there exists a uniquey0 such that
Z(y0) = 0; (ii) there existn functionally independent real functionshi : M → R which are
solutions of

Z(h) = h. (17)

Notice that thehis provide a linearizing set forZ, with matrix Ab
a = δb

a . We say then
that thehi are adiagonalizingset of functions forZ.

Notice also that it would be natural to require that for a dilation field there isδ > 0
such that

lim
t→−∞ ζ(t; y) = y0 ∀y ∈ Bδ(y0) (18)

however, this is automatically satisfied when a linearizing set exists.

† The introduction of linearizing sets in the general case allows one to deal with more general situations [28, 29];
e.g. if we have a linear flow inRn but we consider it on a nonlinear embedded submanifoldM (the simplest
case being that ofM = Sn−1 → Rn), the flow onM cannot be globally linearized in the usual sense, but it is
recognized as a linear flow by means of this approach.
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Lemma 3. If Z is a dilation-type vector field, with{h1, . . . , hn} a diagonalizing set of
functions forZ, then anyf solution ofZ(f ) = f can be uniquely written as

f (y) =
n∑

i=1

cihi(y). (19)

Indeed, since thehis are functionally independent (which is a condition stronger than
the separating condition) we have for any functionf

df = gi dhi gi ∈ F . (20)

By requiringf to be a solution to (17) we get

f = df (Z) = gidhi(Z) = gihi = LZf (21)

and therefore(LZgi)hi = 0 impliesLZgi = 0, as thehi are functionally independent. Due
to the regularity requirement on thegi in the neighbourhood ofy0, we havegi ∈ R. Thus,
we conclude that any solution toZ(f ) = f can be written in the form (19), with theci

real constants; the lemma is proved.
Clearly, if Z is just X0, then y0 = 8(0) and thehi are nothing else than thexi as

functions of they, i.e. hi = 8i(y).
Using lemma 3, we have immediately:

Lemma 4. Let Z be a dilation-type vector field, with{h1, . . . , hn} a diagonalizing set of
functions forZ. If [X, Z] = 0, then{h1, . . . , hn} is a linearizing set forX.

Indeed, if [X, Z] = 0, we have

LXhi = LX(LZhi) = LZLXhi (22)

which also means

LXhi = A
j

i hj (23)

because of the properties of solutions to (17) and of lemma 3. As thehis define a change
of coordinatesxi = hi(y), the linearized vector field will be

Y = A
j

i hj

∂

∂hi

. (24)

We finally notice that generically (i.e. under suitable non-degeneracy conditions, satisfied
by generic vector fields) ifh1 is a solution toLZh = h, we may get new functionally
independent solutions by applying repeatedlyLX to h1. This simple fact can be of help in
constructing the diagonalizing set forZ.

4. Symmetry and recursion operators

In this section, we would like to point out how the approach defined in the previous section
is related to recursion operators and the Lax formalism for integrable systems. Notice,
indeed, that a system which is linearizable by a change of coordinate (C-linearizable in the
Calogero terminology) is by this definition also integrable.

WhenX is a linear vector field,

X = Ai
jx

j ∂

∂xi
(25)
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we can associate to the matrixA a (1, 1) tensor field

R ≡ TA = A
j

i

[
dxi ⊗ ∂

∂xj

]
. (26)

This tensor satisfies automatically the two equations

LX(R) = 0 (27)

NR = 0 (28)

whereLX is the Lie derivative alongX, andNR is the Nijenhuis tensor [25–29] associated
with R, i.e.

NR[X, Y ] = [RX, RY ] + R2[X, Y ] − R [[RX, Y ] + [X, RY ]] . (29)

By applyingR to X we get the vector fieldsXk = (R)kX, which have the property that

[Xk, Xm] = 0 (30)

i.e. we can generate pairwise commuting symmetries.
Thus for a givenX, the existence of a(1, 1) tensor fieldR such that (27) and (28) are

satisfied is a necessary condition forX to be linearizable.
It would be possible [28, 29] to look for a separating set of functions by searching for

invariant subspaces of exact 1-forms under the endomorphism associated toR on 1-forms,
i.e.

R(dfa) = B b
a dfb (31)

with B a real matrix. Clearly, for the powers ofR we have

(R)k(dfa) = (Bk) b
a dfb (32)

whereBk is thekth power of the matrixB. Notice also that generalized eigenspaces ofR

are invariant subspaces forX.
It should be stressed, finally, that thisR has all the properties of arecursion operator(in

the sense encountered in the theory of integrable systems [15, 28]) for our finite-dimensional
evolution equation; thus, it permits one to also obtain a Lax representation, as discussed,
for example, in [28].

Rather than discussing this point here, we refer to [28, 29] for a general discussion, and
more specifically to [28–35] for the geometry of Lax systems, to [25–29] for the geometry of
Nijenhuis operators, to [25–29, 36–39] for how the Nijenhuis tensor describes the geometry
of the tangent bundle; and to [36–40] for the geometry of the Nijenhuis tensor in relation
with a distinguished vector fieldX on M describing dynamical evolution. Finally, for the
Hamiltonian setting (shortly discussed in the appendix), see [31–35, 41, 42].

5. Examples: linearizable vector fields

We will now consider some examples of applications of our results. We will for each
example consider, in order, the application of the methods based on lemma 1, lemma 2 and
on lemma 4.

In the following we write all indices as lower ones, to avoid any confusion between
indices and exponents.
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Example 1.As a first although trivial test, we consider the casen = 1. Now we have for
(1) ẋ = ax, and

f (y) = a
8

8′ . (33)

Looking first for ϕ = ϕ(y) as solution to (10), we get

ϕy

ϕ
= g(y) ≡ fy

f
(34)

and in this case we actually have

g(y) = 8′

8
− 8′′

8′ (35)

so that indeed

ϕ(y) = c8(y)/8′(y) = c̃f (y). (36)

Thus, applying lemma 1 is just equivalent to determining directly if, givenf (y), there
exists a8 such that (33) is verified; obviously this just yields

8(y) = c1 exp

[ ∫ y

y0

[a/f (y)] dy

]
. (37)

To make a concrete example, in this way we immediately get that

ẏ = 1 + y2

1 + 3y2
ay (38)

is transformed intȯx = ax with

x = 8(y) = y + y3. (39)

Let us now look for

ϕ = ϕ(y, t) = α(y)ξ(t) (40)

so that (10) now reads

αξ̇ + f ξαy = αξfy (41)

which for α yields

dα

α
=

[
fy

f
− ξ̇

ξ

1

f

]
dy. (42)

If ξ̇ = kξ , we get

dα

α
=

[(
1 − k

a

)
8y

8
− 8yy

8

]
(43)

and choosingk = a we get

α = c2

8y

. (44)

For a concrete example, one could use this approach to obtain0 which, for f as in
(38), yields the same8 as in (39).

In the approach based on lemma 3 (and with the notation of section 3),Z is just given
by Z = g(y) d/dy, see equation (34). With this, (18) just yieldsf (y) = c8(y), which
corresponds to lemma 3.
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Example 2. We consider now a two-dimensional systemẏ = f (y), with only one nonlinear
term:

ẏ1 = y1 − εy2 − y2
2

ẏ2 = y2.
(45)

Let us first try to apply lemma 1. From (10), we obtain that the vector fieldX0 identified
by

ϕ1 = y1 − y2
2 ϕ2 = y2 (46)

is a symmetry of our system; this is of the formϕi = 0ij8j with

8 =
(

y1 + y2
2

y2

)
0 =

(
1 2y2

0 1

)
(47)

which indeed satisfies [0−1]ij = ∂8i/∂yj ; correspondingly we get the linearizing
transformation8−1 as

y1 = x1 − x2
2 y2 = x2 (48)

and in this coordinate we get, as expected,

X0 = xi

∂

∂xi

. (49)

Let us now come to the procedure based on lemma 2, i.e. let us look forϕ in the form
ϕ(y, t) = 0ij (y)ξj (t). The equations (10) are now†, assuming thaṫξi = Aij ξj for someA

and eliminating the common factorξk,

fj

∂0ik

∂yj

= ∂fi

∂yj

0jk − 0ijAjk. (50)

With the explicit expression off , and therefore∂f/∂y, given above, we have that
indeed for0 as in (47) above and

A =
(

1 −ε

0 1

)
(51)

the equation is satisfied. This leads to the same linearizing transformation (48) as above,
and the linear equation is indeed justẋ = Ax.

Let us now consider, for the same problem, the approach of section 3; we take

Z = (y1 − y2
2)

∂

∂y1
+ y2

∂

∂y2
(52)

and the diagonalizinghis are given by

h1 = y1 + y2
2 h2 = y2. (53)

One can check that in this case, solving (18)—e.g. by the method of characteristics—
yields

f (y) = c1h1(y) + c2h2(y) (54)

with arbitrary constantsc1, c2; and moreover that{
X(h1) = h1 − εh2

X(h2) = h2
(55)

so that xi = hi(y) takes the system into the forṁx = Ax with the sameA as in
X(hi) = Aijhj .

† Notice thatA and0 should be seen as the unknowns of the problem.
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Example 3.We will consider again a system inR2, given now by

f =
(

2(y1 + y2 + ey1)

(y2 − y1)(1 + 2 ey1) + ey1 − 2 e2y1

)
. (56)

If we look for solutions of (10) in the formϕ = ϕ(y), we are confronted with a system
of two PDEs, i.e.

2[y1 + y2 + ey1]
∂ϕ1

∂y1
+ [(y2 − y1)(1 + 2 ey1) + ey1 − 2 e2y1]

∂ϕ1

∂y2
= 2(1 + ey1)ϕ1 + 2ϕ2

2[y1 + y2 + ey1]
∂ϕ2

∂y1
+ [(y2 − y1)(1 + 2 ey1) + ey1 − 2 e2y1]

∂ϕ2

∂y2

= − [(1 + ey1) + 2(y1 + y2) ey1 + 4 e2y1]ϕ1 + (1 − 2 ey1)ϕ2.

(57)

It is quite clear that this is not an easy equation to solve; however, one can check that

ϕ =
(

y1

y2 + (1 − y1) ey1

)
(58)

provides a special solution to (57). This is indeed of the form (9), as required to apply
lemma 1, with

8 =
(

y1 + y2 + ey1

y2 + ey1

)
(59)

0 =
(

1 −1
−ey1 1 + ey1

)
=

[
∂8

∂y

]−1

. (60)

In order to apply lemma 2 we would instead look for solutions to (10) in the form
ϕ = 0ij (y)ξi(t). The equations satisfied by the0ij are now even more complicated, but
we can take advantage of the freedom given by theA. Indeed, the0 given above is also a
solution to the set of equations one obtains in this way, provided one chooses

A =
(

1 2
−1 2

)
. (61)

Indeed, by (59) we have that, with the inverse change of coordinates

y1 = x1 − x2

y2 = x2 − e(x1−x2)
(62)

we reduceẏ = f (y), with f given by (56), toẋ = Ax with A given by (61).
If we apply the approach of section 3, based on the existence of a dilation-type fieldZ

commuting withX, the Z is given byZ = ϕi∂/∂yi with ϕ as in (58); thehi are the8i

given in (59), and equation (18) givesf as in (54); again, it is easily verified that

X(hi) = Aijhj (63)

with A given explicitly by (61).

6. Examples: nonlinearizable vector fields

We will now give examples in which our results are used to show that a given vector field
(dynamical system) cannot be linearized; we consider systems inR2 for simplicity.
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Example 4. We give first an example of a system which is not linearizable because it does
not admit enough symmetries. We considerR2 with coordinates(x, y) and the vector field

0 = ϕ(x2 + y2)

(
x

∂

∂y
− y

∂

∂x

)
. (64)

If this vector field is linearizable, it has to admit at least two symmetries.
We notice thatX0 = x∂y − y∂x and1 = x∂x + y∂y are a basis for the module of vector

fields which have the origin as a fixed point. Therefore our symmetries should have the
form Y = aX0 + b1, with a, b ∈ F(R2) smooth functions†.

We then look fora, b such that [Y, 0] = 0; we have to require that (withLX the Lie
derivative alongX)

[aX0 + b1, ϕX0] = (bL1ϕ − ϕLX0a)X0 − ϕ(LX0b)1 = 0. (65)

Therefore—for the vanishing of the term along1—we needLX0b = 0, which implies
b = b(x2 + y2).

For the other term, i.e. frombL1ϕ = ϕLX0a, we integrate both sides along a circle
centred at the origin:∫

S1
(bL1ϕ) dθ = ϕ

∫
S1

(LX0a) dθ (66)

whereϕ has been taken out of the integral because it depends only on(x2 + y2), i.e. is a
constant onS1. By using this same argument we arrive at

2π(bL1ϕ) = ϕ(a(2π) − a(0)) (67)

if the function a is regular,a(2π) = a(0) and we getbL1ϕ = 0. Thus, eitherb = 0
or L1ϕ = 0 (or both). Now,1 does not have any smooth constant of motion, and thus
L1ϕ = 0 implies thatϕ is a constant, or otherwise it has to beb = 0.

It follows from this thatL1ϕ 6= 0 requiresb = 0, i.e. there is only one family of
symmetries (depending on a constant) for our system, which therefore cannot be linearized.

Example 5. We will now consider examples in which we have the required number of
symmetries, but none of them is a dilation-type vector field.

Let us writer2 = x2 + y2, and consider the (Van der Pol-like) system

ẋ = −(r2 − 1)x + (r2 − 2)y

ẏ = −(r2 − 2)x − (r2 − 1)y
(68)

we denote the corresponding vector field asX.
When we look for symmetries, i.e. for vector fields

Y = f (x, y)∂x + g(x, y)∂y (69)

such that [X, Y ] = 0, it turns out that the only solutions are of the form (withc1, c2 real
constants)

Y1 = c1X Y2 = c2(x∂y − y∂x). (70)

It is clear thatY2 is not a dilation-type vector field (it is just a homogeneous rotation),
andY1 is just proportional toX (which is, by the way, not dilation-type as well). Thus, we
can conclude—using any of the proposed approaches—thatX is not linearizable.

Indeed, as for the first proposal,X does not admit symmetries depending on an arbitrary
solution of a linear equation; for the second one, it does not admit a dilation-type symmetry.

† We recall that symmetries of a vector field with isolated fixed points should have the same points as fixed points.
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Example 6. We consider now the following generalization (again inR2) of the situation
encountered in example 5:

ẋ = α(r)x − β(r)y

ẏ = β(r)x + α(r)y
(71)

(where bothα(r) andβ(r) are not identically zero) so that we deal with the vector field

X = (α(r)x − β(r)y)∂x + (β(r)x + α(r)y)∂y (72)

or, as it is convenient to use polar coordinates(r, θ),

X = α(r)∂r + β(r)∂θ . (73)

We write in full generality

Y = f (r, θ)∂r + g(r, θ)∂θ (74)

and now the condition [X, Y ] = 0 gives two PDEs, i.e.

α(r)
∂f

∂r
+ β(r)

∂f

∂θ
= f · α′(r) (75)

α(r)
∂g

∂r
+ β(r)

∂g

∂θ
= f · β ′(r). (76)

These can be solved using the method of characteristics; for the first one we get

dr

α(r)
= dθ

β(r)
= df

f α′(r)
(77)

equating the first and the third term we get

f (r, θ) = ξ(θ)α(r) (78)

and by using the other term—or going back to (75)—we getξ ′(θ) = 0, i.e.

f (r, θ) = c1α(r). (79)

Let us look at (76); this yields

dr

α(r)
= dθ

β(r)
= dg

c1α(r)β ′(r)
(80)

equating, here again, the first and the third term we get

g(r, θ) = c1β(r) + ξ(θ) (81)

and again, from the other term or going back to (76) we getξ ′(θ) = 0, i.e.

g(r, θ) = c1β(r) + c2. (82)

Thus, we have only two symmetries,

Y1 = c1X (83)

Y2 = c2∂θ (84)

and we are in the same situation as in example 5, and we can derive the same conclusions,
i.e. thatX is not linearizable. Clearly, the present discussion does not apply if the condition
α(r) 6≡ 0 6≡ β ′(r) is not satisfied.
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Appendix. Linearization of Hamiltonian systems

In this appendix, we shortly consider the case of a Hamiltonian system, and how the
discussion given in the present paper applies to it.

We recall that a dynamical systemX is a Hamiltonian on a symplectic manifold(M, ω),
whereω is a symplectic structure (i.e. a closed non-degenerate two-form) if

iXω = −dH (85)

with H the Hamiltonian function.
It would be natural enough to ask what can be said aboutω andH if we linearizeX;

as a matter of fact, the possibility thatX admits alternative Hamiltonian descriptions [43]
suggests that not much can be said, in the end, about them.

We recall thatX admits alternative Hamiltonian descriptions if there exists symplectic
structuresωa and Hamiltonian functionsHa—where a belongs to some index set—such
that

iXωa = −dHa. (86)

To investigate our question, let us start with a coordinate systemξ i which linearizesX,
i.e.

X = (Ai
j ξ

j )
∂

∂ξ i
. (87)

In this the equations of motion are

ξ̇ i = ωij ∂H

∂ξj
= Ai

kξ
k (88)

where we have writtenω as

ω = ωij dξ i ∧ dξ j ωijωjk = δi
k. (89)

We notice that forξ = 0 (i.e. ξk = 0 for k = 1, . . . , 2n) we have

ωij (0)
∂H(0)

∂ξ j
= 0 (90)

with ωij (0) invertible.
If we differentiate (88) and evaluate it at the origin, we get

Ai
k = ωij (0)

∂2H(0)

∂ξ j ∂ξk
. (91)

Thus,ω̃ andH̃ , given by

ω̃ = ωjk dξ j ∧ dξk H̃ = ξ j ξ k ∂2H(0)

∂ξ j ∂ξk
(92)
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provide a Hamiltonian description for the dynamics.
As a byproduct of this discussion, we get that any decomposition ofA into an invertible

skew-symmetric matrix times a symmetric matrix provides an alternative Hamiltonian
description ofX. If we write

A = ω−1
0 · H0 (93)

by using any invertible matrixT which commutes withA we get

A = [T −1ω−1
0 (T t )−1] · [(T t )H0T ] (94)

thus, if T is not a canonical transformation forω0, by this procedure we obtain alternative
Hamiltonian descriptions.

It is not difficult to show that odd powers ofA are matrices associated with Hamiltonian
(with respect toω0) vector fields, while even powers are generators of symmetries forA,
which are not canonical; therefore a linear Hamiltonian vector field always admits alternative
Hamiltonian descriptions [44].

By using odd powers ofA, for a generic matrixA which describes a linear Hamiltonian
vector field, we get a maximal set of pairwise commuting quadratic first integrals; i.e. any
linear Hamiltonian system (even if it is not generic) is always completely integrable in the
Liouville sense [44].

We would like to summarize our discussion of the Hamiltonian case as follows.
A linearizable Hamiltonian system does always admit (many) alternative Hamiltonian
descriptions; out of a given Hamiltonian description for a given linearizable dynamical
system described by a vector fieldX, we can always find one with a quadratic Hamiltonian
(in a coordinate system in which the vector fieldX is linear); a linearizable Hamiltonian
system is always integrable in the Liouville sense. As for the linearization process, we
should first linearize the dynamical vector fieldX, and only afterwards take care of its
Hamiltonian description.

Finally, for what concerns the recursion operator, we mention that in this case we get
a factorizable one [45, 46], by usingωa to raise the indices ofωb, with the additional
requirement that the Poisson bracket

{ξ i, ξ j }a,b = ωij
a + ω

ij

b (95)

satisfies the Jacobi identity.
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